Targeted proteomics strategy applied to biomarker evaluation.
The evaluation of biomarker candidates, involving quantitative measurement of a large number of proteins in bodily fluids, remains the main obstruction in the development of a biomarker validation pipeline. Although immunoassays are commonly used, high-throughput and multiplex-capable methods are required for expediting the evaluation process. MS-based approaches employing targeted proteomic strategies provide not only a sensitive, but in addition a precise quantification tool, which is versatile, systematic, and scalable. Its capability of multiplexing hundreds of targets facilitate a cost-effective and rapid evaluation and is especially useful during the early stage of the process where a large list of candidate biomarkers must be triaged before entering validation studies. The robustness requirement for the methods also mandates a high degree of selectivity to analyze complex clinical samples. Improvement in the selectivity of LC-MS methods has been achieved by adopting high-resolution and high-accuracy mass analyzers to perform quantitative analyses with a novel method called parallel reaction monitoring. This article discusses the design and performance of biomarker evaluation studies using targeted proteomics strategies and the implementation of recent technology developments.