Study of the involvement of autophagy in the acquisition of tumor resistance to Natural Killer-mediated lysis. (Doctoral thesis)

November 28, 2013 By:
  • Baginska J.

Natural killer (NK) cells are effectors of the antitumor immunity, able to kill cancer cells through the release of the cytotoxic protease granzyme B. NK-based therapies have recently emerged as promising anticancer strategies. However, it is well established that hypoxic microenvironment interferes with the function of antitumor immune cells and constitutes a major obstacle for cancer immunotherapies. Recent studies demonstrated that autophagy is an important regulator of innate immune response in this microenvironment, but the mechanism by which autophagy regulates NK cell-mediated antitumor immune responses remains elusive. Here, we demonstrate that hypoxia impairs breast cancer cell susceptibility to NK-mediated lysis in vitro via the activation of autophagy. This impairment was not related to a defect in target cell recognition by NK cells but to the degradation of NK-derived granzyme B in autophagosomes of hypoxic cells. Inhibition of autophagy by targeting beclin1 (BECN1) restored granzyme B levels in hypoxic cells in vitro and induced tumor regression in vivo by facilitating NK-mediated tumor cell killing. Together, our data highlight autophagy as a mechanism underlying the resistance of hypoxic tumor cells to NK-mediated lysis and provides a cutting-edge advance in our understanding of the underlying mechanism. This study might pave the way for the formulation of more effective NK cell-based antitumor therapies.

2013 Nov. Paris: Université Paris-Sud, 2013. 132 p.
Other information