Metabolomics reveals altered hepatic bile acids, gut microbiome metabolites, and cell membrane lipids associated with marginal vitamin a deficiency in a Mongolian gerbil model.

July 01, 2020 By:
  • La Frano MR
  • Brito A
  • Johnson CM
  • Wilhelmson B
  • Gannon B
  • Fanter RK
  • Pedersen TL
  • Tanumihardjo SA
  • Newman JW.

SCOPE: This study is designed to provide a broad evaluation of the impacts of vitamin A (VA) deficiency on hepatic metabolism in a gerbil model. METHODS AND RESULTS: After 28 days of VA depletion, male Mongolian gerbils (Meriones unguiculatus) are randomly assigned to experimental diets for 28 days. Groups are fed a white-maize-based diet with approximately 50 microL cottonseed oil vehicle either alone (VA-, n = 10) or containing 40 microg retinyl acetate (VA+, n = 10) for 28 days. Liver retinol is measured by high-performance liquid chromatography. Primary metabolomics, aminomics, lipidomics, bile acids, oxylipins, ceramides, and endocannabinoids are analyzed in post-mortem liver samples by liquid chromatography-mass spectrometry. RESULTS: Liver retinol is lower (p < 0.001) in the VA- versus VA+ group, with concentrations indicating marginal VA deficiency. A total of 300 metabolites are identified. Marginal VA deficiency is associated with lower bile acids, trimethylamine N-oxide, and a variety of acylcarnitines, phospholipids and sphingomyelins (p < 0.05). Components of DNA, including deoxyguanosine, cytidine, and N-carbomoyl-beta-alanine (p < 0.05), are differentially altered. CONCLUSIONS: Hepatic metabolomics in a marginally VA-deficient gerbil model revealed alterations in markers of the gut microbiome, fatty acid and nucleotide metabolism, and cellular structure and signaling.

2020 Jul. Mol Nutr Food Res.64(13):e1901319. Epub 2020 Jun 22.
Other information